Nuclear Magnetic Resonance Metabolomic Profiling of Mouse Kidney, Urine and Serum Following Renal Ischemia/Reperfusion Injury

نویسندگان

  • François Jouret
  • Justine Leenders
  • Laurence Poma
  • Jean-Olivier Defraigne
  • Jean-Marie Krzesinski
  • Pascal de Tullio
چکیده

BACKGROUND Ischemia/reperfusion (I/R) is the most common cause of acute kidney injury (AKI). Its pathophysiology remains unclear. Metabolomics is dedicated to identify metabolites involved in (patho)physiological changes of integrated living systems. Here, we performed 1H-Nuclear Magnetic Resonance metabolomics using urine, serum and kidney samples from a mouse model of renal I/R. METHODS Renal 30-min ischemia was induced in 12-week-old C57BL/6J male mice by bilaterally clamping vascular pedicles, and was followed by 6, 24 or 48-hour reperfusion (n = 12/group). Sham-operated mice were used as controls. Statistical discriminant analyses, i.e. principal component analysis and orthogonal projections to latent structures (OPLS-DA), were performed on urine, serum and kidney lysates at each time-point. Multivariate receiver operating characteristic (ROC) curves were drawn, and sensitivity and specificity were calculated from ROC confusion matrix (with averaged class probabilities across 100 cross-validations). RESULTS Urine OPLS-DA analysis showed a net separation between I/R and sham groups, with significant variations in levels of taurine, di- and tri-methylamine, creatine and lactate. Such changes were observed as early as 6 hours post reperfusion. Major metabolome modifications occurred at 24h post reperfusion. At this time-point, correlation coefficients between urine spectra and conventional AKI biomarkers, i.e. serum creatinine and urea levels, reached 0.94 and 0.95, respectively. The area under ROC curve at 6h, 24h and 48h post surgery were 0.73, 0.98 and 0.97, respectively. Similar discriminations were found in kidney samples, with changes in levels of lactate, fatty acids, choline and taurine. By contrast, serum OPLS-DA analysis could not discriminate sham-operated from I/R-exposed animals. CONCLUSIONS Our study demonstrates that renal I/R in mouse causes early and sustained metabolomic changes in urine and kidney composition. The most implicated pathways at 6h and 24h post reperfusion include gluconeogenesis, taurine and hypotaurine metabolism, whereas protein biosynthesis, glycolysis, and galactose and arginine metabolism are key at 48h post reperfusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury

Sepsis and septic shock are the leading causes of death in critically ill patients. Acute intestinal ischemia/reperfusion (AII/R) is an adaptive response to shock. The high mortality rate from AII/R is due to the severity of the disease and, more importantly, the failure of timely diagnosis. The objective of this investigation is to use nuclear magnetic resonance (NMR) analysis to characterize ...

متن کامل

بررسی اثر 5- آمینوسالیسیلیک اسید(5-ASA) در آسیب ناشی از ایسکمی و رپرفیوژن در کلیه موش صحراییThe Assessment of 5-Aminosalicylic Acid(5-ASA) Effect on Ischemia-Reperfusion Injury of the Kidney in Rats

    Background & Aim: Occlusion of organs artery results in ischemia and the opening of occluded artery leads to tissue lesion identified as reperfusion injury(RI). Oxygen-derived free radicals seem to be involved in the reperfusion injury. In this experimental study the effects of 5-aminosalicylic acid(5-ASA), a prescribed drug for ulcerative colitis, was assessed. 5-ASA is a potent scavenger ...

متن کامل

The effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury

Objective(s): It has been shown that adipose-derived mesenchymal stem cells (AD-MSC) have protective effects in acute kidney injury (AKI). This study was conducted to assess the therapeutic effects of AD-MSC in rats subjected to acute kidney injury by 45 min of renal ischemia followed by 48 hr of reperfusion (I/R). Materials and Methods:...

متن کامل

The role of L-arginine and aerobic exercise in experimental renal ischemia reperfusion injury in male and female rats

Introduction: Renal ischemia/reperfusion (I/R) injury due to reactive oxygen species (ROS) formation is the main cause of acute kidney damage. Nitric oxide (NO) biosynthesis and oxidative stress are closely related to the pathogenesis of renal I/R injury. This study was undertaken to determine the effects of L-arginine (L-arg) as NO donor and aerobic exercise (EX) and also the combination of L-...

متن کامل

The role of hormones in renal disease and ischemia-reperfusion injury

The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016